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SUMMARY

An iterative tramsformation procedure suggestealby H. Wielandt for
numericsl solution of flutter and simil= characteristic-value problems
is presented. Application.of this procedure to ordinary natural-
vibration problems and to flutter problems is shown by numerical
exsmples. Comparisons of computed results with experimental values and
with results obtained by other methods of smalysis are made.

INTRODUCTION
.

Existing methods of flutter analysis include the representative-
. section method, generalized-coordinatemethods, matrix methods, and

operational methods. The present paper presents an iteration procedure
for anslysis of flutter and similar characteristic-vs3ue problems.

For ordinsxy natural-vibration problems, iterative procedures of
the Stodola type (references 1 and 2) sre suitable for finding the funda-
mental and higher-order natural modes and frequencies. The higher-order
solutions ~e obtained through use of the orthogonslity relations that
exist mong the natural modes.

Orthogonslity relations smalogous to those that exipt in ordinary
vibration problems can be found in the flutter problem oriLyby intro-
duction of the so-cald.ed“adJoint” problem. (This additional step is
unnecessary in ordinsry vibration problems by virtue of the fact that
they are “self-adjoint.“) Wielandt has suggested anlterative transfor-
mation procedure (reference 3) which is well-suited to the flutter
problem in that it avoids the need of orthogonslity relations and hence
does not require consideration of the adjoi.ntproblem. The iterative
transformation procedure caa also be applied to ordinsry natursl-
vibration problems with less labor than is generally required in the
extended Stodola procedure.
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Because both the original and translated works of Wielandt-sre
difficult to follow, an explanation of the idea of the iterative trans-
formation procedure is given in the present paper and the application
of the procedure to ordinary natural-vibration problems and to flexure-
torsion flutter problems is shown in numerical examples. Comparisons
of computed results with experimental vslues and with results obtained
by other methods of analysis are also made.

P

-LS

flexural stiffness

torsional stiffness

spanwise coordinate with origin at root of wing

complex representation of amplitudes end phases of translation
of elastic axis in harmonic motion

complex representation of amplitudes and phases of rotation
about elastic axis in harmonic motion

coupled mode (y,@)

complex coefficients of y which, when multiplied by y, give
complex representation of amplitudes and phases of aero-
dynamic and inertia forces associated with translational
component of harmonic motion

complex coefficients of @ which, when multiplied by @, give
complex representation of amplitudes and phases of-aerodynamic
and inertia forces associated with rotational component of
hsrmonic motion

complex coefficients of y which, when multiplied by y, give
complex representation of amplitudes and phases of aerodymamfc
and inertia torques associated with translational component
of harmonic motion

complex coefficients of @ which, when multiplied by ~, give
complex representation of amplitudes sad-phases of aeroi@smic
snd inertia torques associated’with rotational component of
harmonic motion

.

structural-dsmpingcoefficients associated with flexure and
torsion,respectively (see appendix B)

.-

.

●

�

.
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coefficient of artificial dsmping (may be either positive or
negative)

reduced frequency (lxD/v)

frequency of hsrmonic motion

()1 + iga
characteristic value *2

length of semichord of wing

length of cantilever @ng from root to tip

mass ratio (7/fipb2)

velocity of air relatiw to wing

distributed mass of wing per unit length of span

mass density of air

distance between midchord sxis and elastic sxis in terms of
local semichord, positive when elastic axis is behind mid-
chord axis

distance between elastic axis and gravity -is of distributed
mass of wing in terms of local semichord, positive when
gravity axis is behind elastic axis

radius of gyration of distributed mass of wing about elastic
axis in terms of local semichord

transcendental functions of k (see reference k)

time

()cm
eigenvalue factor

E-l

ratio of complex constmts

length; in numerical solutions, distance between specific
adjacent stations of wing

applied force

.
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~ applied torque

v shesJ—

M bending moment

a curvature

P slope of elastic axis

T twisting moment—— .-.

e angle ofitwist

Subscripts:

1,2,3, . . .

a2,a3,a4,...

b

A,B,C,...

R

I

o

bl,ba2,ba3,...

Superscripts:

(1), (2), (3),...

true modes or eigenvalues

transformed modes

intermediate derived mode

stations

real

i.maginsry

reference value

sweeping functions

cycles of iteration

NACA TN 2346

—

A bar over a symbol indicates a concentrated quantity instead of a
distributed quantity.

.

A prime is used to denote division by oz.

.

.
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ITERATIVX TRANSFORMATION METHOD OF SOLUTION

General Features of Method

The principle of the iterative trsmsformation procedure is similar
in form to that of the standard iteration procedure for solting
characteristic-vslueproblems. Both procedures require the determina-
tion of the solutions in the order of the magnitudes of the eigenvalues,
beginning with the fundamental. Both procedures require assumptions of
modes, integrations which generally must be done numerically, and
sweeping operations for higher-order-mode determinations. The distin-
guishing features of the iterative transformation @ocedure occur in
the determination of solutions higher than the fundamental and are as
follows: (1) The immediate aim is to determine not the true nth mode,
as in the standard iteration procedure, but a particular linear combina-
tion composed of all modes from the fundamental to the nth. This linesr
combination is referred to as the transformed nth mode. The transformed
nth mode can be made to have nodal (zero) points at specified stations
of the wing; such a feature is highly desirable in numeri.cslwork.
(2) The sweeping operations, which consist of subtractions of lower-
order-mode shapes from the function obtained by integrating the assumed
mode, do not employ the orthogonality relations as in the st-dard
iteration method hut make use of forctig functions that, in numerical
work, greatly simplify the sweeping operations and increase the over-
all accuracy of the restits by making the sweeping operations more
consistent with the rest of the process. (3) Although the true nth
eigenvalue is determined directly in the iterative transformation pro-
cedure, the true nth mode must be computed from quantities within the
iteration cycle after the transformed nth mode is found.

The
tally in

Outline of Steps in the FTocedure

equation of equilibrium of a cantilever beam vibrating harmoni-
pure flexure is

dp ~1 &

z d“=’”%
or, sfter inte~ation with proper attention to boundary conditions,

(1)

(2)
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The solutions of this integral equation are the true natural modes —
(eigenfunctiOnS) yl, y~< ~~, . 0 . and the corresponding natural

frequencies (eigenvalues) ml, ~, 03, . . . . For convenience in

subsequent discussion, the true modes are assumed tO be nofi~ized to
unity at-some position (station A) along the beam.

The first mode smd frequency are assumed to have been previously
determined by the Stodola process. The iterative transformation pro-

-.

cedure becomes applicable in the determination o?.the second mode and
.—

frequency. As mentioned previously, the immediate aim in the iteration
for the second mode is the determination of a line= combination o~-fkrsti
snd second modes which is called the transformed second mode. The linear
combination Y2 - Y1 which has zero ordinate at-st&tion A is chosen and -.
defined as the transformed second mode to be determined. The iteration ““

—

for determination of this transformed second mode ~y be described as
follows:

._—

(1)
(1) A plausible shape ya2 for the transformed second mode iS

assumed. This shape must have zero ordinate at station A end ~ould
satisfy the bound~y conditions as closely as possible.

(2) The displacement

2 (1)
resulting from the inertia load 7u@ y=
shape y%)

correspond ng

vibr:ti~ harmonically at frequency ~ is

.

.

to the assumed

calculated.

This calculation must usually be done numerically with the square of the

(
frequency %2) being carried along as w m“dete~ed factor.

(3) A first-mode shape (previously determined) is subtracted
(swept out) from the calculated displacement yb in an smount such

that the resulting displacement is zero at station A. Thus the
resulting displacement is &—-

(2)

()

‘b
Yap .yb-

EA
Y~

(2)
(4) The re~ulting displacement Yz is compsred with the assumed

displacement y~~). When the computations are numerical, the—

.
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.
(2) (1)

I
ratios Ya2 Ya2 are compared at all the stations. If the assumed

. displacement is exactly equal to the transformed second mode, the ratios
are equal to each other.\ These ratios contain the single unkn.om w>
and the second frequency is that vslue of cJ@ which ties the ratios
unity.

I
‘2) y~) from the first cycle of iteration(5) If the ratios y=

outlined in the four preceding ‘stepsare not reasonably the same at all
stations, the process must be repeated until the ratios become reasonably
the same. Each new cycle starts with the resultant displacement of each
preceding cycle. The convergence of this process to the second frequency
and the transformed second mode is proved in appendix A.

The transformed third mode and the third frequency sre computed in
the following manner. The tr~sformed third mode is defined as that
Combination of the first three natural modes which has a zero ordinate
at the ssme station that was used in the transformed second mode (sta-
tion A) snd slso a zero ordinate at some other station, station B. Thus
the transformed third mode is defined as

. The iteration is as follows:

I (1)
. (1) A plausible shape ya3 for the transformed third mode is

assumed. This shape must have zero ordinates at stations A s.ndB and
should satisfy the boundary conditions as closely as possible.

(2) The displacement

()iS calculated, with the square of the frequencY ~32 c=ied ~o~ as

sm undetermined factor.

(3) The first of two sweeping operations, in which a first-mode
shape iS sWept frOI.Uthe displacement yb so as to make the resulting

.

.
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displacexgentat station A zero, is performed. This operation gives the
.-

displacement .—

r)

b
Y~ - ~Ayl

.-

(4) The second sweeping operation, in which a“transformed-second-
—

mode shape (previously determined) is swept from the resulting displace-
ment of step (3) so that-the new resulting displacement is zero at
station B as well as at station A, is performed, (This second sweeping
operation cannot~isturb the zero condition at station A established in
step (3) because the second sweeping f-unction(the transformed second”
mode) is identically zero at station A.) Thus, the final resulting dis-
placement is .

(2)

() [

yb r)
yb-~

yl A ‘1
‘as

.yb-
~A

Y~ -
Y@

L .-

.- —

Y&

B

/
(5) Comparisons of the ratios y$) y$) at--al stations are ~de,

and, if they are not “reasonablythe same, additional cycles of iteration ‘=
me carried out until the ratios become reasonably the same. The third
frequency is then computed from the ratios as expki.ned previously.
Convergence of this process.to the third frequency and the transformed
third mode is proved in appendix A.

M-

Frequencies andtransfo~d modes higher &n the third msy be
computed by extensions of the process just described. ~

Physical Interpretation of the Proce-dure

A physical interpretation of the iterative transformation procedure
can be given. With regard to the transformed second mode, for exsmple,
the following question may be asked: Under what conditions can the beam
tibrate in the transformed-second-~de shape at the second na~”’
frequency? Vibration in shape y= = y2 - yl at frequency ~ implies

an inertia loading y~2(y2 - Y1). But if%his load is substituted in

Place of 7m 2Y in the right=hand side of equat-ion(2), the result
after inte2 dtion will not be y2 - yl but .
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However,

added to

duce the

[if an external (forcing) load of an amount 7 %2 -

(

%2)Yl ‘s
the inertia load, the total load 7 ~2y2

J- q2Y will pro-

shape y2 - yl. Thus

(4)

The inertia and forcing loads are illustrated in figure 1. The inertia
load acting alone produces a displacement (equation (3)) generally dif-
ferent from zero at station A. The forcing load produces the displacement

This displacement (equal to the sweeping function) has the shape of the
previously determined first mode and is equal and opposite at station A
to the displacement due to the inertia load; that is, by virtue of the
previously assigned normalizations at station A,

(6)

Thus the displacement due to the forcing load is completely determined
when the displacement due to the inertia load is lmown. The gist of the
foregoing snalysis is that vibration in the transformed-second-mode
shape is the response of the besm to an oscillatory forcing load of the
first-mode shape and of frequency equal to the second natural frequency,
superimposed on a free tibration of the beam in the second natural mode.

Similsr physical interpretations of the iterative transformation
process for modes higher than the second can be made.

,
Application of the Procedure in G2dinsry

Coupled Natursl-Vibrati.onProblems

The procedure that has been outlined in a preceding section for
pure flexure can easily be extended to systems capable of simultaneous



10 NACA TN 2346

flexural and torsional displacements. Airplane wihgs belong to the
latter class of systems. The only distinguishing element in coupled
flexural-torsionalvibration problems is that-each natural mode contains

.

two components, the flexure and the torsion. These components must
always appear together in a fixed relation to each other. The two com-
ponents must be computed together and must be used together.

Each coupled mode is a solution of the simultaneous differential
equations

&E1&y
d’2 d’2

= yuz(y +-bud) (7)

(8)

Equations (7) and (8), after integration, become (for a cantilever beam)

# =~x&r ~2(buy +b2r2@)(~”)2
x

(9) —

-.

(lo)

The solution of%he integral equations (9) and (10) for the coupled trans-
formed second mode by the iterative transformationprocedure is outlined
diagrammatically in figure 2. The flexural component-of’the displace-
ment for a particular step is illustrated in the left-head side of the
figure and the torsional component is illustrated at the ssme level in
the right”=handside.

In the first step, an approximation to a lineer combination of the
true first end second coupled modes is assumed. The particular linear
combination having zero fleiural displacement at”the t“tp“station(sta-
tion A) is chosen. (For greatest numerical accuracy, this nodal point “
should be chosen in the component and at the station where the fli.rst

coupled mode has its maximum numerical value.) (1)
The symbols yu

(1)
‘d #a2 sre used to designate the flexural and torsional components

of this assued displacement, respectively.
._

In general, the magnitude
of the torsional component relative to the flexural component-is

.



NACA TN 2346 11

“
difficult to estimate; the most expedient thing to do is take one of
the components equsl to zero.

.

The second step is the computation (by numerical integration) of
the two components of the displacement due to the inertia forces

7022(y~ ‘bu@Z) and inertia torques 7~2(bUY+ + b~2@+) that are
associated with the asswed displacement. The result is termed the

interme~ate derived mode, and the synibols yb
(1)

‘1) and @b are used

to designate its two components.

The third step is the.determination of a sweeping function having
the shape of the first coupled mode (previously determined) and a magni-
tude such that the sum of the intermediate derived mode snd the sweeping
function equals zero in the flexural component at station A. In
algebraic terms, the first-mode sweeping function is given by

.

(1) = ()
Yp)

‘bl
-—

Y1 *Y1
(U)

(12)

The fourth step is the addition of the intermediate derived mode
snd the first-mode sweeping function to give the derived transformed
second mode. Thus the two components of the derived transformed second
mode are

The

stations

●

(1)
(2)

()

yb
(1) - ~ Y1Ye = yb

A

(13)

(14)

/

(2) (1)
/

(2) (1) at ~
calculation of the ratios Yw Yd @ @* @@

completes the first cycle of iteration.



E NACA TN 2346

.

Additional cycles are carried out until the ratios at d-l stations
in both the flexural and torsional components have vslues that are
reasonably the ssme. The true second natural frequency of~he coupled

+

system is then obtained as described previously.

Steady tibration of an airplane wing atizero airspeed is an example
of coupled naturslvibration. The actual tieric~ calculations for
the transformed”second mode as well as for the first-mode and tram.s-

.-
.

formed third mode of an airplme wing vibrating at zero airspeed are
discussed subsequently as a special case of flutter.

The more general equations of airpl=e fluttei at nonzero airspeed
may be interpreted in such a way thatrthey csn be solved by a process
analogous to that just described for coupled natural vibration.

APPLICATION OF THE ITERATIVE TRANSFORMATION

METHOD TO FLUTTER

Flutt-erEquations

The differential equations of equilibrium
simple harmonic motion are

dxz f

(-&GJl+

These equations govern a motion

, Q!z=Q#+gjj)dx

represented by

Y(x,t) = y(x)etit

o(x,t) = #(x)efit

The use of the structural-dampingcoefficients

tions (15) and (16) is discussed in appendix B.

fo= wing executing

.

4P (15)

%@
(16)

(17)

(18)

gy ‘d g@ in equa-

.-

..
The expressions

Pyy + P@d and ~y +-Q#pf are the intensities of%pplied force snd .—
torque, respectively. For aerodynamic and inertia forces and tor~ues

.
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due to air flow smd
values given by the
ence 4.): For P

Y’

in which

and

For P@, ,

in which

and

distributed mass, the P and
following formulas (resrrsmged

For
%’

Qy=QR,-‘QI,
in which

13

Q coefficients have
from those in refer-

and

(19)

(20)

(21)

(22)

(23)

(24)

(25’)

(26)

(27)
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And for
Q@

in which
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(28)

and

‘1$=H[*-‘)*-(++‘k?-((-‘2El(i))o~2’30)
For inertia forces and torques due to concentrated mass,
of force and torque sre, respectively,

F@ +3$
P#+P@$=Mnl *

ax+o

and

f+Y+Q@$’”liin Q+=
&x+”

in which

and

the intensities

(31)

(32)

.

-.

—

—

.

(33)

( 34)

(35)
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For a csmtilever wing the boundary conditions on the displacements
sxe

(Y)~+ = (@)x*= ($g)
x.()‘~’’+i’’gx=.=

r .--I

The different al equations (15) and (16) are
‘1eigenvalue u as an explicit factor.

become
Thus

ndw written with the
equations (15) ad (16)

S“(’ +%@=~2(’Y’y+‘/0

and

d G+ + i.@)g=a2(C$’Y+QJ#).—
dx

in which the P’ and Q’ coefficients are equal, respectively, to
the P and Q coefficients diyided by U2.

Formulation of Pseudoflutter Problem

(37)

(38)

Tho e solutions m2,
B (y,d) of equations ( 37) and (38) for

which u is a resl and positive (not complex) qusntity represent the
steady harmonic motions of true flutter. However, because the P and
Q coefficients are in general complex and because of the presence of
structural dsmping, the solutions of equations (37) and (38 will, in

algeneral, be complex and will include complex eigenvalues . As in
other methods of flutter analysis, the problem is made tractable by

kmassuming at the beginning a value of the parsmeter k = ~. This assump-

tion fties the values of the P and Q coefficients. A res,lv~ue
of k is assumed because v must be real and only real vslues of u
can represent flutter. To avoid the inconsistence of assumed resl
values of k smd obtained complex velues of u.? in the solutions, the
problem itse~ is altered by introducing an artificial dsmping so thatthe

~2
complex eigenvalue is given by. 1 + iga~ a is the coefficientwhere g

of artificial damping. Thus the differential equations of what may be
termed the pseudoflutter problem become.
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&2‘W +‘%)5=1 L&y +w) - (39)

.
. —

d.—
dx

The value of 02
is therefore the

(40)GJ(l ‘ qg = ~ :2ig?&’Y +q’ff)

can now be real for any assumed real.vslue of’ kand’ -”-
square of the frequency of the steady ha%onic motion

maintained by the artificial-dampingforces and the naturally present
aerodynamic, inertia, structural, and structural-dsmpingforces. ‘hue
flutter is possible for those special cases in which ~ is zero.

Equations (39) and (~) sre stiilar in formto equations (7) and (8)
and can be solved by the iterative transformation procedure in a way
completely analogous to the solution of-the ordinary problem. The com-
plications introduced by the presence of-air forces require, however,
that a set of solutions be obtained for each of several assumed values
Of k. The fact that most of the functions involved are complex virtu-
ally quadruples the labor as compared with that required in the ordins&
coupled natural-vibrationproblem.

Steps in the Iteration as Applied to nutter
.

The iteration procedure employs the basic differential equations (39) -
and (40) in their integral forms which, for the cantilever wing
consideration, are

xx
Y=;

JJ 00

PJ=;J’X
o

E*L’L’ (PY’Y+ Pfq(d

qi+~’ (Q/+ Q@j(d+

under

(41)

(42)

1 -tiga
in which C stands for the more conveniezltform -

U2
of the

eigenval.ue. The iteration of equations (41) and (42) follows the ssme
formas the iteration of equations (9) and (10). Rriefly, the steps
are as follows:

.
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(1) A real value of
and Q coefficients sre

17

k is assumed and the values of the complex P
camputed.

(2) An assumption is made
cycle of iteration the assumed
cycles it will be complex.)

(3) me complex loadings

for the desired mode y,#. (In the first
mode may be real but in the following

p~ + p~ and C$y + Q~ me computed.

(4) The integrations indicated in the equations are csrried out
numerically to get the complex intermediate derived mode.

.

(5) me sweepiu operations are performed by using the complex
lower-order transformed modes previously determined. For convenience
in numericsl calculations, the flexural and torsional components of the
complex derived (swept) transformed mode sre computed in the forms

and
t

1 70 L4 EOIO bo2—— .
~ ~ EOIO GOJOL2 v

(43)

(44)

- respectively, in which
59

and are nondimensional complex functions

of the spanwise coordinate x.

(6) The derived and assumed modes sre ccmparedby computing their
ratios at the stations of the wing. If these ratios sre not reasonably
the same, additional cycles of iteration are carried out until the ratios
sre reasonably the seine. In the limit (never obtained in practice) the
ratios will be identical and the proper value of C is that vslue which
makes them unity; that is,

,

. in~ich y end @
and the functions in
limiting cycle.

J

constitute the
the numerators

(45)

assumed mode of the limiting cycle
constitute the derived mode of the
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Equation (45) may be stated h the form
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(46)

which D and H are nondimensional real numbers. Inasmuch-as C
1 + iga

defined as
~2 ) equation (k6) may be written

(D

from which the frequency
obtained as follows:

~o L4– 1 + iga
+ iH)— — =

V. EOIO # “

and artificial--ping

ga=;

(47)

coefficient are

(48)

(49)

The relative air velocity corresmondiu to the assumed value of k is
given through the deftni~i~n of ‘k, th~t-is,

lx.).v._
k (x)

NUMERICAL EXAMPLES

“

Numerical computations presented in this section illustrate the
actual application of the iterative transformation.procedure first to
the ordinary natural-vibrationproblem (vibration at zero airspeed) and
then to the flutter problem. All exsmples deal with the cantilever wing

-.

shown in figure 3.

The geometric, structural, snd mass properties of the wing sre given
in figure 3. A station coordinate system is employed for the purposes
of the required numerical integrations. “Fourstations along the sQan .

have been selected as indicated in the figure; one of these stations ie
located atithe spanwise position of the concentratedmass. The
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.

.

distributions of forces and displacements over the span are considered
to be adequately defined (through interpolation) by the forces and dis-
placements at the four selected stations. The selection of a system of
stations in any problem is important because it greatly influences the
smount and accuracy of,the work to follow. In problems, such as the
present one, that involve concentrated masses, a station must be placed
at each concentrated mass because displacements at the concentrated
masses must be known. (More generslly, a station must be placed at each
discontinuity. Discontinuities may be present in the distribution of
the structural stiffness and in the plan form as well as in distribution
of mass.) The other stations should he equally spaced between the dis-
continuities, and for the system of parabolic interpolation used in the
numerical integrations in this paper there must be a minimum of one sta-
tion between each adjacent pair of discontinuities. The total number
of stations should be the smallest possible that is consistent with the
desired accuracy because the calculation effort increases rapidly with
an increasing number of stations. In coupled systems, the number of
degrees of freedom allowed is twice the number of stations selected;
that is, the number of degrees of freedom in either the flexural.or
torsional component of displacement is equal to the number of stations
employed. Experience has indicated that with parabolic approximations
results accurate to at least two significant figures in the highest mode
computed can be obtained by employing numbers of stations as follows:
For uncoupled systems, the number of stations should be two greater than
the order of the highest mode to be Coptedj for coupled systems, the
number of stations should be one”greater than the order of the highest
mode to be computed, with a minimum of-three stations. More than these
minimum numibersof stations may be required if their use is dictated by
sufficiently many discontinuities.

Ordinsry Coupled Natural Modes and Frequencies

The calculations for the first, second, and third modes at zero
airspeed for the wing of figure 3 me shown in tables 1, 2, and 3,
respectively. In this case k = co and the only ae-rodynamicforces sre
the apparent-mass forces. For simplicity, structural damping ia dis-
regarded; therefore, sJl quantities entering the problem are real. The
numerical values of the aerodynamic-inertia force coefficients for k . CO,
as well “asfor other vslues of k to be used subsequently, sre given in
table,4.

The first coupled mode is computed in table 1. Table 1 shows in
sepsrate tabulations the flexural and torsional parts of the calculation.
The first cycle of iteration (part (a) of the table) is shown in full
detail. Two forms for the torsional part of the calculation are shown:
The first form may be used when the torsional stiffness GJ is constant
over each bay or over the whole length of the wing; the second form,
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which requires slightly more work, must be used wh”en
.

GJ is vsriable
and may be used, as in this case, when G-J iS Constanti The second
and third cycles of iteration are summarized in parts (b) and (c) of .
table-l.

.-

Details of the firsticycle of iteration, ifiihe procedure that
—

applies only for constant-torsional stiffness GJ for the torsional
part of the calculation is used, are as fol~ws: In columns 1 of

(1)
table l(a) the two psxts yl end @[l) of the assumed first mode ~e

listed. The torsional component”~s assumed to be”zero because it will
ultimately be smsll and is difficult to estimate. columns 2 and 3 are
the appropriate products of the assumed mode and the distributed-force
coefficients. Columns 4, which are the sums of columns 2 and 3, give
the two components of the external load which correspond to the assumed
mode and the arbitrary frequency u. Columns 5 g~ve tti concentrated
loads (external forces and torques) thai”m”e”equiti~entto the distr~b-
uted loads of columns 4. These equivalent concentrations sre given in
columns 5 in terms of the pertinent distances between stations Li and
in columns 6 in terms of the reference distance J,o. Formulas used for
computing the equivalent.concen,trationsfr~m the distributed 10ad8 me
given in appendix C. Columns 7 and 8 are the appropriate products ofi
the assumed mode and the concentrated-force coefficients. columns 9
sxe the total concentrated loads, the Sums of COh&lS 6, 7, and 8.

The flexural and torsionsl calculations must ‘nowbe described
separately. In column 10 for flexur=,-the average shea&s in the bays” ““ - -
between stations are found by a successive summation of the concentrated
loads from the tip where the shear is zero inboard tm the root. In
column 11 the increments of bending moment are computed by multiplying
the shears by the bay lengths in terms of Ao. The bending moments of
column 12 are found by a successive summation of the increments of
bending moment from the tip where the bending moment is zero inboard to
the root. Column 13 gives the distribution of.cu~titure, which -ifi

—

obtained by dividing each ordinat-”of the bending-moment curve by the
local value of EL (EI in this exmple is constant). Equivalent--con-
centrated curvatures sre now obtained by applying to the distributed
curvatures the previously used formulas for equivalent concentrations.
Column 14 gives these equivalent concentrations in terms of the dis-
tances Li, and column 15 gives them in terms of the reference dis-
tance Xo. The average slopes in the bays are obtained in column 16 by
a successive summation of the concentrated curvatures from the root where
the slope is zero outboard to the tip. The”increm&ts oiHderived
flexura.1displacement are computed in column 17 by multiplying the aver-
age slopes by the bay lengths in terms ot Lo. The flexural compo-

nent y~2) of the derived mode is obtained incol@n 18by a successin ~_

summation of the increment-sof displacement fkom the root where the
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displacement is zero outboard to the tip. Column 19 gives the ratios
at the selected stations of the derived flexursl component to the
assumed flexural component.

ColumrLs10 to 15 for torsion are now considered. Column 10 gives
the average twisting moments in the bays of the wing and is obtained by
a successive summation of the concentrated torques of column 9 from the
tip where the twisting moment is zero inboard to the root. The average
twists in the bays sre computed in column 11 by dividing the average
twisting moment in each bay by the locsl value of &T (GJ in this
exsmple is constant over the whole span). The increments of derived
torsional displacement are obtained in column 12 by multiplying the
average twists by the bay lengths in terms of Xo. The torsional compo-
nent of the derived mode is computed in column 13 by a successive sum-
mation of the increments of displacement from the root where the dis-
placement is zero outboard to the tip. Inasmuch as the derived displace-
ment of column 13 is in terms of GJ, the displacement is converted
into terms of EI in column 14 so that it may be compsred tith the
assumed torsional displacement on the same basis as the assumed snd
derived flexural displacements sre compared s.ndso that the next cycle
may be started with displacement components having the same dimensions
as the assumed mode of this first cycle. Column 15 normally would con-
tain the ratios at the selected stations of the derived torsional compo-
nent to the assumed torsional component, but in the case of table l(a)
these ratios are meaningless because the torsional component will ulti-
mately be different than was assumed in column 1.

Before the results of further cycles of iteration for the first
mode cue described, the form that the numerical integration for the
torsional component must talce when H is variable is described. In
the part of table l(a) showing the calculation for variable G-J,
columns 1 to 4 are the ssme as in the calculation for constant GJ. The
form of the numericsl integration changes at column 5. Column 5 consists
of increments of twisting moment over the bays. These increments are
obtained as increments of area beneath the curve of distributed torque
(column 4). Formulas used for computing these increments are given in
appendix C. In column 5 the increments of twisting moment are given in
terms of the distances Xi, and in column 6 they are given in terms of
the reference distance Xo. The twisting moments at the selected sta-
tions due to the distributed torsional loading sre obtained in column 7
by a successive summation of the increments of twisting moment. The
components of external concentrated torque are as for constant GJ and
sre given in columns 8 and 9. The applied concentrated torque gives
twisting moments as shown in column 10. Column 11 is the sum of
columns 7 and 10 and gives the total twisting moments at the selected
stations. (Note that in columns 10 and 11 there is a discontinuity in
twisting moment at the station having the mass discontinuity.) Column 12
gives the distribution of twist found by dividing column 11 by the locsl

.
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.
value of GJ (GJ being in general not constant-). The increments of
derived tmsional displacement me computed in columns 13 end 14 by
applying to the values of column 12 the ssme formulas applied previously -
to column 4. The torsional component-f the derived mode (columns 15
and 16) is, except--forsmall computational discrepancies, the same as
in the previous method, as it should be.

Two additional cycles of iteration were found to be adequate for
the determination of the first mode and frequency. The results of=
these iterations sre shown in parts (b) and (c) of table 1. In table l(b),
for example, colunuis1 give the two components of the assumed mode of
the second cycle, which are obtained by normalizing the derived mode of
the first cycle to unity in the flexural component _at--thetip station.
This normalization is not essential but-facilitat-esmanipulations and
compsri.sonsby keeping the numerical.values in aU. cycles within the .
same range of magnitude. Columns 2 give the derived mode obtained by
the numerical integration procedure just described. The ratios of
derived to assumed mode are given in columns 3 for both components of
displacementi-These ratios are seen to be fairly uniform. The ratios
obtatied in the third cycle in table l(c) are, for practical purposes,
identical. The averaging device shown in columns .4of table l(c) and
to the righti-oftable-”l(c)is adopted as a quick and generally quite
accurate”way of smoothing out small discrepancies that remain in the
ratios after convergence is almost complete. This device, although
clearly not necessery in the case of table l(c), is useful-in other
cases throughout the numerical examples and is explained as follows:
The two ratios Im columns & are obtained by considering the flexural and
torsional components of the displacement separately and then dividing
the sum of the station values of the derived displacement by the sum of
the station values of the as”sumeddisplacement. When a discrepancy
remains between two ratios of the type in columns 4, the average of-these
two is taken as the final value; the final value for this case is given
in the celculationto the right of table l(c). This device gives greater
weight to-the larger ordinates and is in that respect~imilar to other
weighting procedures such as the energy snd least-squares methods but is
much simpler. If the-assumed and derived displacements contain both
positive and negative ordinates, the negative ordlna.tesshould be changed
to positive for the purpose of the summations. The “remainingcalculation
shown to the right of table l(c) gives that value of the arbitrary fre-
quency u which makes the ratio just computed unity. As proved in
appendix A, this vslue of u is the fundamental frequency uq_.

.

Table 2 gives the main results of three cycles of iteration
required to obtain satisfactory approximations o&th$ second frequency
and the transformed second mode-at zero airspeed”(k =@).

cO1-sl(!$--” *the first cycle (parts (a) ofl-table2) contain the two components yw
/.\

snd $:) of the assumed transfo~d second mode. This mode must have”””—
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one zero ordinate (excluding the root ordinates). Although this zero
ordinate may theoretically be tslsenat smy station, the numerical
accuracy of the results is greatest if the zero ordinate is placed at
the station and in the component where the preceding mode (the first)
has its maximum numerical value (since the numerical process is such
that the larger ordinates contain more significant figures than the
smaller ordinates). Therefore, the zero ordinate of the transformed
second mode is placed at the tip station in the flexursl component, this
location being designated station A. In the numerical values of

(1)
columns 1, the flexural component ye would normally be tsken as zero.

(The values that sre shown are estimated from flutter calculations that
had previously been made for this wing.) Columns 2 giv& the intermediate
derived mode obtained by numerical integration. Columns 3 constitute
the first-mode sweeping function. ‘Theshape of this sweeping function
is given by columns 2 of table l(c) and its magnitude is such as to be
equal and opposite to the intermediate derived mode at station A. mu s
the derived transformed second mode (columns 4), which is the sum of
COhJJJUM 2 and 3, has zero ordinate in the flexursl COII.IpOIEnt d Sta-

tion A and a shape comparable to the assumed mode, as indicated by the
ratios in columns 5. The ratios in the next two cycles (psrts (b) and
(c) of table 2) show marked improvement in uniformity. The final value
of the ratio computed below the table gives, as proved in appendix A, the
value of the second frequency up, as shown.

The main results of the Iterations to obtain satisfactory approxi-
mations of the third frequency and the transformed third mode at zero
airspeed are stated in table 3. Typical operations required in a cycle
sre outlined in table 3(a). Columns 1 ive the assumed transformed third

mode made up of the two components
(17 -d

‘a3 J?&. ZFhetransformed

third mode is to have a zero ordinate in the flexural component at the
tip station as in the transformed second mode and a zero ordinate in
the torsional component at the tip station. The location of the second
zero ordinate is designated station B. To obtain greatest numerical
accuracy, the selection of the second zero ordinate is governed by the
sane rule that was used for selecting the first zero ordinatey namely,
that the new zero ordinate should be placed at the station and in the
component where the preceding mode (the transformed second) has its
maximum numerical value. The numerical values that are shown in
columns 1 sre estimated from pretious flutter Cdcd.s.tionsj the torsional

(1)
component @a3 would normally be taken as zero. Columns 2 give the

intermediate derived mode, and “columns3 give the first-mode sweeping
function which, as before, has a magnitude at station A that is equal.
and opposite to the intermediate derived mode. Columns 4 constitute the
transformed-second-mode sweeping function which has a shape given by
columns 4 of table 2(c) and a magnitude at station B equal.and opposite
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to the sum of the intermediate derived mode and the first-mode sweeping
function (the sum otiolumns 2 and 3). The derived transfo~ed t~rd
mode of%he first cycle is the sum of columns 2, 3; and 4 and Is given
in columns 5. The ratios in coI.umns6 are fsr from uniform. The ratios
in the second and third cycles (parts (b) end (c) of table 3) show
improvements in uniformity. The iteration is discontinued at the end of
the third cycle where the ratios are about as uniform as they can get
with the limited number of significant figures that–are present. The
frequency obtained by the smoothing device is the third frequency U3
and has the value-shown.

.

The patterns laid out in the foregohg examples establish the
general technique that can be used to obtain zero-airspeed modes and
frequencies higher than the third. Guiding rules for determining the
number of selected stations to be employed have been given previously.
These exemples also set the basic pattern for the computation of the
modes and eigenvalues of pseudoflutter and of flutter.

Modes and Eigenvalues of Pseudoflutter and ofYFlutter

The operational solution in reference 5 gave for the wing under
consideration (fig. 3) a reduced frequency at--flutterof 0.14-43. In
order to use this operational solution, this same value (k = 0.1443) is
used in the flutter calculations that follow.

The calculations for-the first, second, and third modes at-
.

k = 0.1443 are shown in tables 5, 6, and 7, respectfmly. Aero_ic-
inertia force coefficient~ have been ccmq?utedby equations (L!3)to (35)
and their values are given in table 4.

.
Structural dsmping is disregarded,

although a note on the method of incorporating structural dsmping in
the calculations is made subsequently.

Table 5(a) shows in detail the first-cycle of iteration for the
first mode. The form of the computations is the same as thatishown
previously for the determination of zero-air-speedmodes. The amount of
computation, however, is between three and four times that-required for
zero-airspeedmodes because of the ftictithatthe functions involved ac~
complex and thus must be described by two parts - a red. partiand an
-inarypart. Columns 1 and 2 are the real and iiiaginaryparts,
respectively, of the assumed first mode. As a start, all parts of the
assumed mode except the real psrt of the flexural c“iimponentare taken
as zero. Columns 3 to 6 are the real parts of the products of
aerodynamic-inertiacoefficients and the assumed mode, and thus their
sums (columns 7) are the real parts ofithe distributed load. If the
expressions for the distributed load are considered
more evident.

~ this condition 3s
The distributed forces producing flexure ere given by
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.

(‘Ry )(- ‘pIy yR + ‘y,) + ~R@ - ‘@) ~@R + ‘@I) = ‘Ry% + ‘R@% +

)- ‘I#R - ‘I@@R
(51)

(51) appear in cohmns 3 to 6 inThe terms of the real part of equation
the flexural part of table 5(a); the terms of the imaginsry part of
equation (51) appesr in columns 22 to 25 in the flexural psrt of
table 5(a). This separation of real and hag- parts allows the dis-
placement due to each pat to be computed separately. A similsr explana-
tion can be made for the quantities in columns 3 to 6 and columns 18
to 21in the torsional part of table 5(a).

Real.and imaginary parts of the concentrated loads that are equiva-
lent to the distributed loads are computed as explained previously by
the formulas of appendix C. These values sre shown in columns 8, 9, 27,
and 28 in the flexural part and in columns 8, 9, 23, and 24 in the
torsional part. The real and imaginsry parts of the loads ‘dueto the
concentrated mass follow nefi in order, and the total concentrated loads
are given in columns 12 and 31 in the flexural part and in columns 12
and 27 in the torsional part. The average shesrs, average twisting
moments, and bending moments are then computed as described previously.

The remaining parts of the computations in table 5(a) that are
associated with the reel parts of the load are described as follows
(the remaining parts that are associated with the imaginary parts of the
load are similar): Column 16 in the flexural part gives the distributed
curvature due to the real part of the load. This curvature is obtained
by dividing the ordinates of the real part of the bending-moment curve
by the local values of the complex flexural stiffness EI(l + i~)(l + iga)-

In these exsmples, any actual structural demping is disregarded; there- ‘
fore

‘1
is zero. The factor 1 + iga, containing the as yet unknown

srtific al-damping coefficient, combines with m2 to give the factor l/c
1 + iga

in column 16, C being the arbitrary eigenvalue *2 .“ If the actual

structural damping ~ is regarded as other tb zero, the values in
column 16 would be computed as follows: The real and imaginary psrts of
the bending moment would be combined into the complex bending moment
~ + m~. This complex bending-moment distribution would then be divided

by the local values of the complex stiffness to give
~+iM~

The factor 1 + iga
EI(l + i%) (~ + iga)“

would be carried along in the srbitrary eigenvalue C,
~+m~

and the numerical values of the real part of the quotient
-
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would be placed in COIU 16.
be similarly placed (in column
the imaginary part of the load,
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The imaginary part of the quotient would
35) in the calculations associated with
The average twists due to the real part -

of the load sre computed in column 14 in the torsional part-oflta%le 5(a),
and those due to the imagiq part of the load must also be computed.
These calculations follow the same pattern as those ~ust”expl ined for
the curvatures. The complex torsio&l stiffness GJ(l + ‘g#)~l + ‘ga)
enters in place of the complex flexural stiffness. ~ GJ or g+ i.
variable over a bay length or over the whole span, the numerical.
integration for the torsional part of%he calculations should be carried
oub .asexplained in the part of table l(a) that deals with variable GJ.

The numerical integrations are completed in the manner already
described, and the derived mode is thereby obtained in the form of four

components of displacement. (2)The flexural componeiitswe ym (2)
‘d ylI

of columns 21 and ~ in the flexural part-. The tnrsional components

are & ~ @g) of%olumns 17 and 32 in the torsional parti How-
—

ever, these components are not actually the real and imaginary parts of
the flexural and torsional,components of the deri”vedmo”de,because each
one of them contains thecomplex factor 1 + iga. Nevertheless, the -

(2)complex derived mode is given”%y yn -t-iyll‘2) and @M (2)(2) + i@ll .

The complex ratios of the complex derived mode to the complex .
assumed mode me computed in column 41 in the flexural part and
column 33 in the torsional part. Only two of thege ratios have actu~ly _ ,_
been computed but they are sufficient to indicate-the n&ed for further
cycles of iteration.

A total of four cycles of iteration (the main result~ of the last
—

three sre shown in parts (b), (c), and (d) of table 5) were required for
satisfactory convergence. In columns 6 of table ~(d)”aqd imme&ately
below table ~(d), the smoothing device described previously is applied
to obtain the best single value of the ratios. The fundamental (first)
eigenvalue ie

Cl= (269.5 -

that valye of C which makes the ratio unity. T%US
Ao+y

82.2i) ~
1 +-lg~

and since cl is defined as , the
92

frequency and
the real and imaginary parts of

artificial damping of the first mode are obtained from

1 + igd

52 =

the equation

4-

(269.5 - 82.2i) ~ (52)
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The calculation of these quantities and the&orresponding airspeed ~1

which is obtained from the relation vl = —
k

are shown at the bottom

of table 3.

Tables 6 aiid7 show the main results of the iterations to obtain
the transformed second and third modes for k= 0.1443. Four cycles of
iteration for each mode gave satisfactory convergence. The assumed
modes of columns 1 and 2 of tables 6(a) and T(a) were taken in the forms
recommended previously in connection with tables 2 and 3. w tables 6

(n)
and 7, the com lex intermediate derived modes sre given by YbR

?)
+ iyg)

(n) + i~b; ,ad @bR “ the complex first-mode sweeping functions, by

Ypn (n) ‘n) with shapes corresponding tO COl_S 3(n) and db~ + ‘@blI+ ‘yblI
and 4 of table 5(d); and the complex transformed-second-mode sweeping

(n) (n) (n) (n)f~ctiOnS, by yb~ + ‘yba21 and @ba ‘i@h~I with shapes corre-

sponding to columns 7 and 8 of table 6(d). The results computed in and
below table T(d) give for the third eigenvslue, ga3 = 0.030 =d

‘3 = 1,68.9 radisas per second. The corresponding airspeed is

‘3 = 390 feet per second.

Computation of T&ue Modes

Because the critical flutter velocities are given directly by the
eigenvelues, lmdwledge of the true modes in flutter problems is of no
value (at least of no value recognized at present). The ssme atatanent
applies to the transformed pseudoflutter modes) with the exception that
in the iterative method their determination is a necessary adjunct to
the determination of the eigenvalues. In ordinsry problems of forced
vibration (at zero airspeed), however} the true modes are often used
with great advantage. For this reason and for the sake of completeness
of the presentation of the iterative transformation procedure, the
method of determining true modes from results of,the iterative trans-
formation procedure is illustrated in tables 8 and 9.

The computations in tables 8 and 9 pertain to the same wing analyzed
in the previous exsmples. The modes computed sre for k = 0.1443. The
true third mode as computed in table 9 may therefore be compared with the
flutter mode computed for this wing by the operational metlmd in
reference 5.

In table 8, the true second mode is computed as follows from func-
tions appearing in the last cycle of iteration for the trsmsformed
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second mode (table 6(d)): Preceding t~ table proper is the calculation

c1
of the eigenval.uefactor ’12 = q

- 1 that is needed for computing the .

true second mode. b the terminology of tables 6(d) and 8 and as shown-
in appendix A, the true-second-mode shape is given by

and

in which ,- -. J

and

(53)

(54)

.-
— .,

(55)

—

(56)
.

Columns 1 of tiable8 show the key ordinate
(
(4)

‘blR
(4)
I)+ “bl A

of the

‘4) iy~~~j #~~ + i&~ as given infirst-mode sweeping function yb~ +

columns 5 ad 6 of table 6(d). The key ordinates taken as the lsrgest
ordinate (the ordinate at station A) for the reason of accuracy

The key ordinate of-the first-mode shape
;:: ~l::;:’y; i@ll (equal to tti-first terms on the right-hand

of equations (53) and (54)) is shown as the boxed value in column 2
obtained by dividing the vslue in column 1 by the eigenval.uefactor

sides —

and iS —

F12.

The other values in columns 2 are obtained by using the key ordinate in 1
conjunction with the first-mode shape given,in columns 3 and k of-
table 5(d). Columns 3 show the transformed-second-modeshape
(5) ‘5) @(5) + i@~~~ (equal to the second terms on the right-hand

.

yam + “a21> a2R
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sides of equations (53) and (54)) given by columns 7 and 8 of table 6(d).
The sum of columns 2 and 3 which is given in columns 4 “givesthe shape
of the true second mode y= + iY21~ @= + i@21 (equal to the left-hand

sides of equations (53) snd (54)).

In table 9, the computation of the true third mode proceeds as

follows: The necessary eigenvslue factors
c1F13 = ~

C2
-1 and F23==-”1

sre computed as shown. In the terminology of table: T(d) and 9 and as’
shown in appendix A, the true-third-mode s@?e iS given by

(5) (5)
Y3R + ~Y31 =plm )+ ‘yll~+(yl~ + ‘y121]+(y~ + ‘y~~+(ya~ + “a31

(57)

in which

(4)
‘ba2R

(4)
+ “ba21

C2 ~—-
C2

(61)

(62)
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and yl= + iy121, #1= + ‘$121 $is tO ya= + ‘y~I~ am + i$a21 as

~ + i$~~
(5) (5) @(5~ + i~~~ in table 8.y~ + lylI~ ~ is to y- +-iya21> ~

The key ordinates
(
(4) (4)

) ($
(4)

yb~ ‘–iyblI A ‘d b-
(4)

\ r)+ ‘@ba2 B of-the first

and second sweeping functions appear in columns 1 and 2 and are taken
from COlumns 5, 6, 7, and 8 of table 7(d). The key ordi~te cjfthe
functions ‘23(Y12R + ‘yuI)~ ‘23(@l~ + ‘@121)~ whfch ~e equal to the
second terms on the left-hand sides of equations (59) and (60), is com-
puted in columns 3 by using the key ordinate of co~umns 2 in conjunction
with ordinates at stations A and B in columns 2 and 3 of table 8 as
follows:

[
( )]’23 Ym + “121 A

=

table 9

—

L —

44)
—

,’,’

( 4)“)F23@”_ + 1a21 B (63}

— table 9
table 8 .

The key ordinate of the functions

which are equal to the first terms on ~he left=hand-side~”ofequations (59) .
and (6o), is given in columns 4 and, i~k~cor~ce with equations (59)

(4) @(4) + @:& ofand (6o), is the difference between y
+ “blI’ bl,R

(
col~s 1 ~d F23 Yl, + ‘y~2~)> ‘23~~ + ‘~~~~) of columns 3. The

key ordinates of the first-mode shapes yl~ + iylll, @l~ + i@lll md

Y~~ + iy121, $1= + i@121 sre shown in columns 6 and 5 and me obtained

by dividing the values in columns 3 md 4 by the appropriate ei,genvalue
factors. The sum of the key ordinates of columns 5“snd 6, shown as the-
boxed value in column 7, is the key ordinate of the total-first-mode
shape y~ + iYll> ~~ + ‘@lI which is equal to the sums of the first

two terms on the right-hand sides of equations (57) end (58). The other
values in columns 7 are obtained by using the key ordinate in conjunction
with the first-mode shape given in columns 3 and 4 of table 5(d). The

—

key ordi~te of the trs,nsformed-secoti-modeshape y= + iY=lj d= + i$wL>

which is equal to the third terms on the right-hti sidesof equa-
.

tions (57) and (58), is shown as the boxed vslue in columns 8 and

4
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is obtained by
tor F23. The

dividing the,value in columns
other values in columns 8 are’

31

2 by the eigenvalue fac-
computed by using the key

ordinate in conjunction with the tra&formed-second-mode shape given in
columns 7 smd 8-of table 6(d). Columns 9 show the transform~d-~hird-

(5) (5) (5) (5)
mode shape Yam + iYa313 @a3R + ‘#a31 (equal to the fourth terms on

the right-hand sides of equations (57) and (58)) given by columns 9
snd 10 of table 7(d).
gives the shape of the

to the left-hand sides

Trends

Results of the
paper together with

The sumof columns 7, 8, ad 9 gi~n in columns 10
true third mode yy + ‘y31} d= + ‘@31 (equ~
of equations (57) and (58)).

DISCUSSION OF RESULTS

and Comparisons of Numerical Results

computations shown in the preceding section of the
~esu~ts of sigilar computations based on other

assumed values of k sre given in figures 4 to 6. Figures 4 and 5 desl
with the wing to which the concentrated mass is attached. Figure 6
gives data of a similm nature for the ssme wing without the concentrated
mass. The ccmiputedres@ts obtained by the Rayleigh-Ritz and operational
methods and the exper@ntsJ results, all of which are given for this

\ wing in references 5 sad 6, are also recorded in figures 4 to 6.

In part (a) of figure 4 the solid cur~s show the variation of the
artificial-damping coefficient ga with airspeed in each of the first
three solutions. For each assumed Value of k a dashed curve is drawn
through points that represent solutions for that value of k.. Part (b)
of figure 4 shows in a s~ilsr way the variation of the frequency u
with airspeed and the lines of constut values of k. The facts of
particular interest that are shown by these plots are as follows:

(1) The true flutter condition is given by the third solution for
a value of k between 0.1443 and 0.1530 at an airspeed almost equal to
that found in the experiment. Here the computed value of ga is zero.
The computed frequency at true flutter is slso in very close agreement
with the experimental value.

, (2) The operation~ solution is in good agreement with the experi-
mental solution, but the solutions obtained by the Rayleigh-Ritz method
with three and four modes vary by 72 percent and 22 percent, respectively,
from the solution obtained by the operational method. The operational
solution is theoretic~ly the most exact even though it involves summat-
ions of finite numbers of terms of infinite series. However, as pointed
out in reference 5, its use is limited in practice to wings of uniform
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section. In the present example the results obtained by the iterative
method would be expected to be better than the results obtained by the
Rayleigh-Ritz method .because.the eight degrees of freedou used in the
iterative method are much less restrictive than the three or four used
in the Rayleigh-Ritz method. Although exact agreement of the results of
any of the computationalmethods with the experimental resulti is not to
be expected, the better agreement of the iterativ@ solution as compared
with the operational solution is at first surprising. On further
observation, however, this agreement must be credited to a fortunate
disposition of the errors involved in the iterative method because, in
the case of figure 6, the.relative order of agreement of the operational
and iterative r.esultwwith the experimental result is op’posfteto thati
in figure 4.-

(3) me trends of the solid curves representing the fIrst and
second solutions in figure h(a) indicate that both ~ cross the zero
artificial-dampingaxis at very large airspeeds. But this conjecture
is of’no practical interest so long as a curve (the third solution) that
crosses at a lower airspeed exists. However, the question of whether
the curve for some solution higher than the third could cross the zero
artificial-dsmpingaxis at an airspeed lower than that at which the
third solution crosses demands an answer.

. .
.

.

(4) Reasonable assurance that, smong all possible solutions, the
curve of third solutions in figure k(a) crosses the zero artifici.al-
dsmping axis at a lower airspeed than amy other is provided by the
trends of the curves for constnzntvalues of k in parts (a) and (b) of
figure 4. The curves of k show that the curve~ representing the fourth
solution will most assuredly lie above and to the right of the solid
curves in figure 4(b) and probably below tid to the rightio~..thesolid
curve for.the third solution in figure k(a). The curves of k in fiK-

ure 4(b) me straight lines by definition
(k=$)* -

Prediction of the

courses of the curves of k in figure 4(a)‘cannot-bemade with much
certainty. They have a strong tendency to proceed to the right, but it–
is easy to believe that upward or downward changes in their directions-
could take place. The curve f’orthe fourth solution, however, would
probably cross the zero damping axis at a value of’ v between 500 and
60 feet per second in figure 4(a).

Figure 5 shows and compares the amplitude and phase distributions of
modes computed by the iterative transformation procedure and by the ..

operational method for the wing with a concentrated mass. The first and
second modes as well as the more important third mode frGm the iterative
solution for k = 0.1443 sre plotted, and the third mode from the
iterative solution for k = 0.15~ is also plotted. The third modes
from the iterative solutions for the two values of k agree very well
in shape with the flutter mode obtaiwd in reference 5 by the operational

.“

.
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.

method, and the operational mode lies between the two iterative modes.
Thus the agreement of the iterative and the operational methods is

. again evidenced.

Figure 6 is a plot similar to figure 4 but relates to the behavior
of the wing analyzed in figure 4 if the concentrated mass is not present.
There is very little similarity in the data of the two figures. The
most notable difference is that in figure 6 the true flutter mode appears
in the second solution instead of the third as before and that the
flutter speed is lower than before. Of interest is the occurrence of
sbost equal eigenvslues in the second and third solutions for k . 0.50.
The flutter speeds given in figure 6 by all methods of solution,
including the Rayleigh-Ritz method, are seen to be in substantial
agreement.

CONCLUDING REMARKS

The paper has described the iterative trmsformation metLod sug-
gested by H. Wielandt and has demonstrated the use of the method in an
orderly computation of critical flutter speeds. Numerical comparisons
with solutions obtained by other methods and with experimental vsbes
have been made. The applications made in this paper show promise for
future practical use of the method.

Lsngley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., Jsnuary 17, 1951
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APEENDIX A

ON THE CONVERGENCE OF THE ITERATIVE TRANSFORMATION PROCEDURE

Introduction

The extensive existing literature on the eigenvalue problems is
concerned almost exclusively with the class known as self-adjoint-prob-
lems, in which the eigenfunctions and eigenVa3.Ue5are real. In recent
years, non-self-adjoint eigenvalue problems have received increasing
attention. This class includes the flutter problem in which the eigen-
functions and eigenvalues are generally complex. The literature
referred to by Wielandt~n reference 3 reveals that the non-self=adjoint
eigenvalue problem and the transformation method for its solution have d
been given some attention since at least 1928. Wielandt’s own work
constitutes probably the most extensive contribution on the subject.

The discussion on convergence given herein is not contained in
Wielandt’s work and may be considered a rigorous proof if the following
assumption is valid: that the equations (equations (41) and (42)) for
the system (the wing) under consideration have an infinite number of-
solutions that form a complete set for any value of the reduced fre-
quency k. In the subsequen~emonstrations, the validity of expanding
arbitrery displacement functions in infinite series of eigenfunctions
depends upon the vslidity of the assumption. That-complete sets of
eigenfunctions do exis&seems plausible enough to justify reliance in
the conclusions.

Basic Relations

For any one of the true solutions of the eigenvslue problem, for
example, the eigenvalue- Cm and eigenfunction ym,@m, equations (41)

and (42) may he written as

and

(A2)

.

.
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To make the notation more concise, let the coupled mode ymjdm be
represented by wm. Then if ym,@m is substituted into the right-hand

sides of equations (Al) and (A2), the left-hand sides may be represented
by CmWm. Furthermore, because of the linesx chsracter of the equations
of the problem, substitution of the function series

m

k aiwi (A3)
i=

into the right-hand sides of equations (Al) and (A2) gives for the left-
hand sides the function series

m

AL~iaiwi=
(A4)

The coefficients af sre, in general, complex. The complex eigen-
values Cf sre assumed in the subsequent proofs, except where stated
otherwise, to be different from each other, snd the eigenvslue having
the largest modulus is defined as Cl, the second lsrgest, as C2, and
so forth, so that

lc&H+31 >... (M)

Expressions (A3) and (A4) are the expansions, in terms of the
eigenfunctions and the eigenvalues, of the functions previously referred
to as the assumed and intermediate derived modes, respectively. The
subsequent proofs of convergence are based upon the fundamental relation-
ship that exists between expressions (A3) and (A4).

Fundamental Made

The fundamental mode smd eigenvalue are found by iteration
according to the original Stodola procedure. In the present terminology
and notation, this procedure and its proof of convergence are as
follows: The coupled mode assumed at the beginning of the first cycle
of iteration in general contains some component of each of the eigen-
functions; therefore its most general expression is

(A6)
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The intermediate derived mode (which in this case Is also the final
.

derived mode inasmuch as no sweeping operation is.required to obtain
the first mode) is for this first cycle of iteration .

(A7) - ‘

The second and following
of each preceding cycle,
nth cycle are

i =J-

.-

cycles are begbn ~th the--finalderived mode .
and thus the assumed and derived modes ofithe,—- ,--

(n)= w h-l
W1 E % aiWi

i=l

(n+l) =
‘1

&1=
%n%wi

(A8)

(A9)

In accordance with the definitions given in equation (A5), all
terms on the right-hand sides of equations (A8) sn< (A9) except–the
first are negligibly small in comparison with the first-for large values
of n. W the limit the fundamental mode is obtained as

13JU ++’)= Mm Cln*w. (Ale)
n~~

and the fundamental eigenvalue is
,..

ob”tainedfrom

—

._

(All)

Tksnsformed Second Mode

The initial assumption of-the transformed second mode In general
is of the form

(A12)

.
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in which the arbitrary coefficients bi are
the subscript A refers to vslues of either

in general complex and
the flexural or torsional

components ~f the eigenfunctions at station A. More specifically, if,
for exsmple, the nodal (zero) point of wa2 is selected to be at sta-

tion A in the flexural component, then the subscript A refers only to
the flexur”slcomponents of Wl, W2, W3, . . . and not to their tor-

sional components. Thus each termof the series in equation (A12) sat-
isfies the requirement that either the flexural or torsional component
of the assumed mode be zero at station A.

To simplify the subsequent work as much as possible, the eigen-
functions are henceforth assumed to be normalized to unity at station A; .
thus

()
Wi

11=~ (i=l, 2,

Equation (A12) now takes the simpler form

Wg) . m
F(

bi Wi -

i=

3, . . .)

Jw

(A13)

(lU4)

The assumed mode given by equation (A14) leads, according to equa-
tions (A3) and (A4), to the following intermediate derived mode:

(A15)

Sweeping of this intermediate derived mode with the first-mode shape
(previously*determined)leads to the derived”transformed second mode of
the first cycle as follows:

(A16)

When each succeeding cycle is begun with the derived”transformed
second mode of its preceding cycle, the various functions for the nth
cycle sre

(n) m n-1
‘a2 =

&
Ci bi(wi - W~

=
(A17)
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.

(n+l)
‘a2 = ~ C;bi(wi - WI.)

i.=2

The limits as n approaches infinity are

~ti JnJl) . Mm C2%2(W2 - WJ

(AL8) .

(Alg)

(A20)
Il+m

Equations (A20) and .(A21)

nj m .

and

(An)

show that convergence to the exact-transformed-
second-mode

be obtained

shape W2 - .1 and to the exa=t

theoretically.

True Second Mode

second eigenvalue c~ Carl I

.-
,

The key to commutation of the true second mode is readilv found in
the simple ~ase ill&trated in figure 1. im this case the s~eping
function of the final cycle of iteration would be the displacement

(
~

)

.“
produced by the forcing load y ~ - ~2 yl, in which yl is the

first-mode component of the trsmsformed second mode y<. The sweeping

function is designated by ybl which has a well-defined numerical.

value in the iteration. Thus the value of Y1 could be found from the
equation

. .
.

that is,
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●

✎

✎

✎

✼

✎

1*

/

-* -

.

The sum of ya2 given in the iteration and yl given by equation (A23)

gives y2, the true second mode; that is,

By sJIELLogy,the true-second-mode shape in t-hegeneral (complex)
problem under consideration is found as follows: The limiting value of
the sweeping function is, from equation (A18),

()
#

(n)

()

n~-lbw
lti ‘bl = lti WI
n-jrn n-+ w Awl

= lti C2 C*n~w 21

The expression analogous to equation (A23) is

lim W&)
n-w
c1

= lim C2nb2w1

-1 n-+mY

The expression analogous to

(n+l)
liml we

n-m

which gives the exact shape

equation (A24) is

:lm Wg)

+
% ~

= lim C2nb2w2
n+ w—-

C2

of the true second mode.

(A25)

(A26)

(A27)

~~~sformed Third Mode

The first cycle of iteration for the transformed third mode begins
with sn assumed mode that has two zero values, one of these being in the
same (flexUral or torsional) component and at the same station (sta-
tion A) as
other zero

previously employed f& the transformed second mode. The
value may be teken in the same component as was the first
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zero value and at a different
in the other component at any
these wssible selections for

station (station B), or it may be taken
station, including station A. Either of
the location of the second zero value is

indica~ed in the following equations by use of the-subscript- B. The
initially assumed transformed third mode may be written as

(A28)

in which the arbitrary coefficients di are complex. Each term of the
series in equation (A28) is zero afitation A by reason of the normaliza-

.-

tions stated in equation (A13), and each term is also zero at station B.

The verious displacement
iteration may be expressed as

(n) = w n-id
‘a3 E

i=3 Ci i

The intermediate derived mode

(n) m ~n-l
Wb = x.

[

di Ciwi
i=3 1

The result after sweeping the

functions
follows:

—

‘l-wl-

is

-.
for the general (nth) cycle of
The assumed mode is —

intermediate derived mode with a first-
mode shape such as to make the sum zero at station A is as follows: .

Sweeping of the mode given
mode shape such as to make
component (as the case may
third mode as follows:

by equatlcn (A31) with a transformed-second-
the sum zero in the flexural or torsional
be) at–station B gives the derived transformed.- —
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.

(n+l) . $)

-( )

.$)

‘a3 —wl-
‘1 A

.

.

and

= ~c;diki-“’-
The limits as n approaches

W2 - W1
—

( 1)W2-W

3

inj?inityare

(n+l)
lim wa3

[

= I’m C3nd3 W3 -wl -
nam n+ M

(n+l)
‘a3

nl:m ~ ‘
a3

(A32)

\w2 -$))2 -.JJ (A33)

C3 (A34) “

As shown by equations (A33) ~d (A34), convergence to the exact-

transformed-third-mode

exact third eigenvalue

shape W3 - W1 -
~ ~ ~)B(w2 - ‘1) ~dto the

C3 can be obtained theoretically.

True Third Mode

Computation of the t-e third mode is explained by referring again
to the simple problem of pure flexural vibration in which air forces
are excluded. The transformed third mode in this simple problem would
be given by

(A35 )

.
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The total load reijufired-tohold the–beam In

L

—

If the beam is vibrating with shape

load is given by

1-

L

Y~3

NACA TN 2346

8

equililmium in the—
. . —.

.—

()2Y3-Y~
y% y2 Yp

-YIB
(A36)

at frequency m3, the inertia
—

(A37)

The forcing load required is the diff&ence %etwee= the “totalload
(expression (A36)) and the inertia load (equation (A37)), that is,

The displacement produced by this forcing load is ,,

(H-(=]yl’
and.this displacement must be equaLto
in the last cycle “of”iteration (if the

(A39)

.

the sum of the sweeping functions
iteration has been carried to com-

—

plete convergence). The first sweeping function ii of the first=mode
shape and the second sweeping function is of the transformed-second-mode
shape. If the expression (A39) is written in the form

)( )Y3 - Y~
-ly2

-YIB
yl +

(A40)

.
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each of the sweeping functions contained in the

43

displacement produced
by the forcing l&d–is obvious. Thus

and

in which yb~ ad yb@

J-Y (A42)

designate the first and second sweeping func-

tions, respectively. Both of these functions have well-defined
numerical values in the iteration.

H now a simpler notation is adopted, equations (.41) ~ (A42)
can be written as

in which

’11 =
[

1- (iJY3 - Yl

Y2 - Y~ Y1
B

(A43)

(A44)

(A45)

(A46)
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and

The true third mode is clearly
(A45), (A46}, and (A47); thus

Y~ = Ya~

given by the sum of

+Y~+Y~+Y&

NACA TN 23b6

(A47)

equations (A35),

(A48)

-

.

The transformed third mode ym= is given directly in the iteration.

The procedure for finding the othe~components on the right-hand side of
equation (A48) is as follows: Component ya2, by equation (A44), is

(A@)

Component y12 is known when ye is lmown becauSe itE relation t-o ya2

was established previously in connection with the tiansformed-second-
mode calculations (see equation (A24.)). Component yll” is then found

by equation (A43) as

(A50)

—

.

By analo~ with .theforegoing case, the true third mode in the
complex-eigenvalueproblem is found as follows: The limiting value of
the second sweeping function.is (see equations (A31) and (A32))

.
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.

The limiting vslue
snd (A31))

.-
(n) =

lti ‘bl
na=

of the first sweeping function is (see equations (A30)

U
(n)

wb
.lim —

‘1
‘nsrn ‘~ A

L

The quantities analogous to Y12 and

are, for the present case, Mm .2)
na M

quantity is obtained from the relation
follows:

The relationship of

equations (A26) sndI
second mode. Thus,

)( )]C2 w, - WI

~ W* -w~B ‘1 (A52) <

ye of equations (A43) and (A44)

and Mm w~! The latter
n-=

snalogous to equation (A49) as

lim
(n)

n+ m ‘ba2
=lim

kb W~) and lim W~) is obtatied from
n+ m n+-
(A20) of the section dealing with the transformed

*
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.
—

,. (A26)

.
(n)

’12Mm
?l.+m

.

b’ (A54)

The qusntity analogous to yll .of equation (A43) is, for the present
(n)

case, lim w~~ and is obtained by sa equation analogous to equa-
n--+m

tion (A50) as follows:

-..—

?

The exact shape of
equations (A33)~ (A53)~

the true third mode W3
(A54), and (A55), which

is given by the sum of
is

((n+l)
Mm wa3

n-+m

(n) (n) (n)
+ w= + w~ )+ W12 =

. .

FoUrth and Higher Modes

Extensions of thr--proofsto modes higher than the third c= be made
in a manner similar to the foregoing prools. By this means, the ltera-

. .

tive transformation procedure can be proved,”under the assumptions
stated at the beginning of this appendix, to be convergent for all modes .-
smd eigenvslue”s.

.
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Cases of Eigenvalues Having Equsl or

Nesrly Equal Moduli

For a representative case, suppose that

C1>C2;
II
C3 II>C4 >.*.

and that

C2 = C3II
or that

C2 z IIC3

(A57)

(A58)

(A59)

Under conditions (A57) snd either (A58) or (A59), the assumed and
derived modes after a few cycles of iteration will be tirtually as
follows (see equations (A17) and (A19)):

w(n) = n-
a2 ‘( JC2- 2W2-W

+ c3n-1-b3(W3 - WJ

(n+l) =
‘e C2%2(W2 - WJ

+ c3%3b3 - ‘1.)

(A60)

.
(A61)

If /c21 is only slightly greater than C31, the second terms on the

right-hand sides of equations.(A60) and (A61) become negligibly small
very slowly as n increases, even though they do become negligibly small
as n approaches infinity. If C2 and c, sre equal, these terms
never become negligibly small. Thus, the problem of circumventing this
slow convergence or apparent lack of convergence arises.

A satisfactory method for coping with these conditions is to
combine lineerly the results of the last two c“yclesof the series of
iteration cycles that have been performed. For best results in an
actual,problem, tit less than the third and fourth cycles should be used
for this purpose in order to reduce as much as practicable the effects
of all higher-order components.
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The following formulas for combining the resu-i= of the l“asttwo
cycles are based on the assumption that the assume! and deri~ed”~o”des

..—. .

in each of the cycles contain only components of__t&:t~es in equa-
tions (A60) ad (A61).

The two componerits(with shapes W2 - W1 ati” W3 - Wl) cle~ly

appear in the last cycle in proportions different,..tbanin the preceding
cycle. (The proportion in each cycle is a complex function of the
spanwise coordinate.) Eecau’seof this differing ~o~ortion&.ty t-he
results o&cycles n - 1 and n can be linearly combined so {hat the
combined functions contain ofiy one of the componeirts W2 - ~
and W3 - ~. Accordingly, the ratios of-both th&flexural and tQr-
sional components of the combined.functions at all’gts,tionsshould be
equal to each other. In algebraic terms, this state~nt meti that

=R d“ (A62)

in which r and R are (complex) constants, and the sub6cript S
designates that-the ratio may be evaluated at any ~tation “S, that-is,
that R has the same value for ell stations. All w functions must
be the ssme type of component> either flexural or “torsional.

Since S can be any station, the equality ‘-

())
(n) (n+l)

rwa2 + wa2

rw(n-l n

a2
+w~) ~

exist~, in which stations 1 and 2

(d
(n) (n+l)

rw~ + w+ ::-

W(n-l n “Y (A63)

a2.
i-w~) ~

must be differenh-or mey be the same,
depending on whether the w functions on the left-hand s~de &ret-he
ssme or different-tyyes of components than those on the right-hand side.

..—-

The two values of r that=mtisfy equation (A63) tie

b A(n-l),(n+l)A-

\-./

r=-
)W”

*
(n-l)j(n

2A

rf

.V

.
. .

.
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in which

-,

\
.

w)). ,(+N2
A(n-l)>(n) =

(fs~ (2)2

~(n),(n+l) =__

&)), @))2

.“

13)), (“~)),

A(n-l),(n+l) =
(p), (w:-’)),

p~ f$y,

The corresponding vslues of R

-(n-l),(n+l)

(A65) ~

(A66)

/“
(A67)

exe

l/(n-l),(n+l)Y
R=* *

) K

A

%A( n-1),(n *A(n-l),(n
))

/
A(n),(n+l) A(n-l),(n)

/=-
r

These values of R

values of r, when

are equal to C2
andc,

3
placed in the expression

rw(n) + WA)
a2

*(n),(n+l)

*(n-l),(n)

(A68)

and the corresponding

(A69) .
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.

give modes of the shapes W2 - WI and W3 - W1. When C2 is neaxly

equal to C31, the appropriate set oti.R and r to give the lower

transformed mode W2 - WI is evident. When C2 and
IC31 areequd “--

>
the mode obtained by equation (A69) with either value of r w be used
as the transformed second mode, but the trends of the eigenvalues that
have been or will be determined at other values of the reduced fre-
quency k ~ be used as a guide in making the selection that fits the
trend.

In actual computations, one further
with an assumed mode given by expression

assess the extent to which the functions

—

cycle of iteration beginning
(A69) shouldbe csrried out to

(n-1) (n)
‘a2 ‘ ‘a2 ‘

and W&)

sre free of all except the two components of the types appearing in
equations (A60) and (A61). If the ratios of this cycle are not reason-
ably constant, the unwanted components still.present have to be removed
by cerryhg out another cycle of iteration and again applying equa-
tions (A64) and (A68).

The method Just described is clearly applicable in the general

cases
I

Cn = Cn+l or Cn % Cn+l .

Eigenvalues having equal moduli include the special case of
identical eigenvelues. As a basis for discussion let it be assumed that

Icd‘1%1=IC31 > IC41

and that

C2 = C3 = C23

The significance of the occurrence ofithese

>.,. (A70)

.—

.—
(A71)

two identical eigenvelues
is thatithe wing system may oscillate Wth the s~e frequenc~ and ~t~.
ficial demping in smy ofian infinite number of modes, ~ two of which
are linearly independent of each other and of the first;-fourth, and
higher modes. This infinite number of possible modes (all corresponding
to C23) are the infd.nltelymany linear combinations of two basic

linearly independentmodes that are necessary and sufficient in combi-
nation with the first, fourth, and higher modes to describe-an arbitrary
displacement of the-wing system. Clearlyj o’fiytwo line&ly independent
modes corresponding to the double eigenvalue C23 ‘“arerequired for

analytical purposes. These two are designated W2 md w
3

as before

.

.—
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but with the reservation that. W2

differing linear combinations of a
pendent modes that also correspond

Equations (A20) .aud(A21) are

and W3 must be derivable as

single basic pair of linesrly

‘0 c23-

51

two
inde-

replaced in the present case by

and

lim
n--+CO

Equation (A27) is replaced by

C23$(W2 ‘w~ +,3(W3 ‘WI (A72,

W(n+l)

* = C23

#

(A73)

Mm Wg)
(n+l) . n+.

Mm w=
% ~

. lb C23n(b2w2 + b3w3) (A7h)
n+ m —- n~ca

C23

The transformed second mode (equation (A72)) is in this case a
linesr combination of the first three eigenfunctions, and the so-called
true second mode is actually a linear combination of the second and
third eigenfunctions.

If the iterqtive transformation procedure is now applied in the
regulsr way to determine the transformed third mode, the third eigen-1
vslue, and the true third mode, the results will be as follows: The
transformed third mode will be, like the transformed second mode, a
linear combination of the first three eigenfunctions but will be linearly
independent of the transformed second mode. The so-called twe third
mode will be, like the so-called,true second mode, a linear combination
of the second and third eigenfunctions and will be linearly independent
of the so-called true second mode. The results will also include a
second determination of the double eigenvs@e Cn=. It may therefore

be concluded that
sufficient in all

the iterative transformation p=~cedure is valid and
cases of eigenvalue multiplicity.

.
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APPENDIX B

THE COMPLEX STIFFNESS FOR BEAMS WITH STRUCTURAL DAMPING

The fsmiliar concept of a complex force K(l + ig)s in simple (one-
degree-of-freedom) vibrating systems having structurs,.dsmpingmay be
easily extended to continuous vibrating systems such as besms and air-
plane wings. The quantity K is the elastic-spring constant, s is the
displacement, Ks is the elastic-spring force, and Kgs is the
structural-dampingforce. — .-

For a beam in flexure, the stiffness ofithe fibers is given by the
modulus of elasticity E, which is analogous to the quantity K for the
spring. The elastic etress at any point of the cross section is given
by CE where G is the strain which is analogous to the displacement s.
Then the complex stress at any point of the cross section of a beam with
structural dsmping iS E(l + ig)~. The complex bending moment corre-
sponding to this stress, obtained in the usual way by in~egration of the

Xie This resultmoment of the stresses over the section, is EI(l + ig)

leads to the concept of a complex qtiffness EI(l + igy) for besnm in
flexural vibration with structural dsmping. Similarly, the complex
stiffness of beems in torsional vibration with structural damping
is GJ(l+ ig ).

f
The subscripts y and @ indicate that the structural- ,-

damping coeff ctint g may have a different vslue for torsionsl
vibrations than it has for flexural titrations. Both~snd~may-

be functions of the spanwise position x.
.

-.

.
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APPENDlx c

FORMULAS FOR EQUIVALENT CONCENTRATIONS

AND INCREMENTS OF TORQUE

The formulas used in the numerical exsmples
lent concentrated loads and curvatures are those
in references 7 ad 8. For the concentration at
formula is

At an intermediate station

for computing equiva-
that have been derived
an end station the

(cl)

The significance of the quantities
shown in the following sketch:

used in formulas (Cl) and (C2) is

Distributed-load curve

PI P~ P3 ,

(C2)

.

Fl E2

These formulas are based on the assumption that the distributed-load
(or curvature) curve is a series of second-degree parabolic srcs. When
applied to distributed flexural loads, the formulas give concentration
which produce the same bending moments in the wing at all the selected
stations as the distributed load. The formulas may be correctly applied
to distributed torsional loads only if GJ is constant over each bay.
In this case the formulas give concentrations which produce the same
torsional displacement at all the selected stations as the distributed
load. For a station placed at a discontinuity in ordinate or slope,
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formula (Cl) must M-applied to both the left and the right-of the
station and the results added.

The formulas for obtaining increments ofiarea beneath a curve of
distributed torques are derived in reference 8. These formulas are
based as before on approximating second-degreeparabolas. They sxe
given here in-a slightly different form which is better adamted to
present uses. Thus

%=

!2=
where the significance

shown by the following

i(ql + % + q3) - i(% - .3) (C4)

of ~ and~andof ql, ~,andq3, is

sketch:

Increments of \__
torque Distributed-load

curve

/ ‘Al +

ql %2 qj

I I

The ordinate at a discontinuity should not be used as the middle one
of the three ordinates selected for use in formulas (C3) and (CL). The
formulas are valid only where the three”ordinates are connected by a
continuous curve.

?
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Flarure:(a)Ftistcycle.
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Y*

b *$ @
EIP
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2 -.m -1.q.’f99.2 -8.5 30.2
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k -.094 -13.19.48-3.638.3

5 0 0 0 0

[

Statio

1

2

3

4

5

4 ;“2 1

Station

(b)&c- cycle.

m

12 34 s

(3)
(2) (2)$) ~:) ya2
‘@ ‘b

Yas

b *2 $.2Eu

I
o -411.0

-.692 -252.5

-.757 -99.7
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0 0

80.0]-19.7126.0

m

=-l

(c) Third cycle.m
b *$ b% ~

E&. m
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0 0. 0 0 0 0 0 0 0 0 0 0

.
-..
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5
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i=— 7fact.amfor each column em .gmn under each column hemdh.g.
1-

F1-: (a) ml-atcycle.

1 2 3 b 5 6

(2)
(1) #

Ya ‘bl(u & ~g:.%
a

b XOb $&
r~

o W.1-u&l o 0 .
.W 273..5+34.8 -Ill 5.6 5.9

1.000 104.0 47.0 -IL.g5.1 5.1
.m 9.0-2b.4-4.71.9 4.9
0“ o 0 0 0

Torsion: (a) Fir.t cycle.

1 2 3 k 5 6

+1) +1) +1) p +2) d:)

83 b bl I@ 83
$-J83

4

s “2

o -15.792.841.2.mo

-.083.l~.el2.961.2.88.13-1.6

-.3a4-1.6.033.26U?.m .03 -.1

-.lW -EI.WL63 6.40 .03 -.2

0 0 0 0 0

statIon

(b) 2acondcycle.

ZE?E

h
b &$

~w

o ko5.5-405.5 0 0

1. 243.7 -230.6-5.97.2

.9 91.6 -70.8 -6.36.5

.339 27.0 -22.1-2.52.4

0 0 000

7.2

7.2

7.1

-1

,

(c) mh-d cvcle.. .

m12 345

(3) ~~3)
Y*

Yg) =(3) #

DII
0 404.0-4C4.O o 0

UXKJ 2h2.8-2%.o -5.96.9

.?33 99..3-*.5 -6.36.5

.333 26.9 -22.0-2.52.k

o 0 000

(b) 20C01dCYCb. (c) Third c@...

61?

6.9

7.2 7.07

7.1

I
bkr 2

=rm II I I

m) -gA6 2.576.890

.CQ -9.5a2.606.85 .031.3

.00 -9.722.966.& .Ok7

.03 -4.81.483.40 .036

) 0000

,
0 -9.452.s 6.920

.0342-9.532.686.86 .04loo

-m -9.V 2.946.& .03 5 7.15

.ook2-4.e51.473.41.03‘7
o 0 0 0 0

@+%ilhg’’’=2”-m–
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YABLE 4.- AERODYNAMIC-INERTIAFORCE COEFFICIENTSFOR

VARIOUS VAIUES OF k FCIREXAMPIX WING

[ 1Common factors for each column ere given under the column headings.

Flexure

k
‘w ‘R@ ‘w ‘Id FRy FR@

z ~2 Q’ .2 ~ ~2 k .2 A07 ~ob’ ~2
—$ —

M w # P P P

0.036 27.5 -1444 51.9 -108.3 92.5 -’75.6

.12 30.6 -112.5 13.44 -8.27 92.5 -75.6

.1443 31.0 -75.2 10.82 -4.14 92.3 -75.6

.1590 31.2 -60.7 9.61 -2.53 92.5 -75.6

.2k 32.0 -23.8 5.82 1.35 $)2.5 -75.6

.50 33.0 -3.76 2.39 2.29 92.5 -75.6

00 33.6 1.397 0 0 92.5 -75.6

Torsion

k
% %$ QIy ‘1$ ‘% %$

& &
2

!Z$ ~ ~ ~2 & ~2 Low & hob 7~2
K v P T P

.036 3.67 54g -19.40 68.3 -75,6 114.7

.12 2.32 51.4 -5.03 11.42 -75.6 114.7

,1443 2.36 37.5 -4.05 8.48 -75.6 114.7

.1590 2.28 32.0 -3.60 7.24 -75.6 114.7

.24 1.98 18.24 -2.18 3.67 -75.6 114,7

.50 1.623 10.74 -.895 1.143 -75.6 114.7

w 1.397 ,1409 0 0 -75.6 114.7

.

.-
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ThmE 8.- COMRFIXTIONOF TRUESECONDlKIDEFCEt k = 0.1443.

WINGWITH CON~ MASS.
r

LFlexurd. functions sre in terms of b; torsional.@ctions are in
c1

‘atims “ ~ - 1
1 = F12 = 8.65 - 1.600i.

a 1 a 1 1

543 2 1

station

Flexure

~a.tiOI

1(A;

2

3

4

5

tatioI

l(B)

2

3

4

5

2 3 4

(4)
+ :(4)

‘bill blI = y~ + lylI (5) (5)
Y~ + ~Y&~ Y~ + *21

%2(%R + Ylj

941.0-165 .58i ~108.8+ o.96~ o 108.8+ o.96i

--------------- 61.7+ o.85i -8.4+ 6.3i 53.3 + 7.15i

--------------- 21.06+ 0.491 -6.9+ 6.32i 14.2+ 6.811.

--------------- 5.90+ 0.18i -2.7+ 2.491 3.2+ 2.67i

--------------- 0 0 0

Torsion

1 2 3 4

@@) + i@~:;=

$~ + ‘$11
(5) (5)
$~ + ‘@~I !-% + @21

:;(@n+ @ij

---------------- -0.772+o.4oli 27.13- 4.07i 26.36- 3.67i

---------------- -0.786+ 0.294i 24.37- 4.35i 23.58- 4.06i

---------------- -0.816+ o.048i 16.94- 4.57i 16.x2- 4.521

-----------------0.409+ o.026i 8.p -2.36i 8.30 - 2.33i

---------------- 0 0 0

.
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Imrtlu load: 7%2(Y2 - Y1)
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*

Figure 1.. Illustration of physical basis of iterative transformation
procedure.
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Figure 2.- Illustration of steps in the iterative transformation procedure
for determining ~oupled modes.
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❑ Experiment (~ference 5)
o Operational solution (reference 5)
A Rayleigh-Ritz: 3 modes (reference 6)
v Rayleigh-Ritz: 4 modes (reference 6)
o Iteration: 4 stations
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Figure 4.- Variation of artificial damping and frequency with airspeed in
first three solutions. Wing with concentrated mass.
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❑ Experiment (reference 5)
o Operational solution (reference 5)
A Rayleigh-Ritz: 2 modes (reference6)
v Rayleigh-Ritz: 3 modes (reference6)
o Iteration: 4 stations

(

-N, \ .

‘4.1s90 f ‘\
,k.lz 3d WIlliiuls

L
\

Ist Salutlans +

.W

o 200 400 600 800
v, ft/sec

Variation of artificial damping with airspeed.

800

700

600

500

radians/sec400

300

200

100

0
0 200 400 600 800

v, ft/sec

(b) Variation of frequency with airspeed.

Figure 6.- Variation of artificial dam~ing and frequency in first three
solutions. Wing without concentrated mass.
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